ESRF	Experiment title: Structural dynamics of ATP-synthase and its catalytic F1-fragment during the reaction cycle of ATP hydrolysis	Experiment number : LS722
Beamline :	Date of experiment:	Date of report:
ID02 / BL4	from: 3.9.1997 to: 6.9.1997	28.1.1998
Shifts:	Local contact(s): O. Diat, T. Narayanan	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

* PD. Dr. T. Nawroth, Institute for Biochemistry, Gutengerg-University, Mainz

- * Iris Lauer, Institute for Biochemistry, Gutengerg-University, Mainz
- * Manfred Rössle, Max-Planck Institut for Biochemistry, Martinsried PD. Dr. Hermann Heumann, Max-Planck Institut for Biochemistry, Martinsried

Report:

Conclusion:

- 0) The experimental session LS722 was succesfull in investigation of working F1ATPase and ATP-synthase with the full flux of the ID02 beamline using a CCD camera as proposed in the application:
- 1) The enzymes F_1 ATPase and complete ATP-synthase withstand the full radiation (10¹³ ph/s) for a time sufficient for estimation of a structural film (>40 s) in the presence of a radiacal scavenger and de-gasing.
- 2) Both enzymes can be kinetically synchronized even under full X-ray beam by an ATP concentration jump.
- 3) During the reaction cycle of F_1 ATPase significant size changes were observed ($\Delta R_g = 2$ Å). First experiments with ATP-synthase detected those, but with weaker statistics (object of new experiment 6/98).
- 4) The size pulses changed their kinetics with the temperature parallel to the enzyme reaction kinetics.
- 5) The structural film showed three short expansion pulses, and a terminal short shrink pulse during the reaction cycle. The occurence and time structure was the very first time detected by our experiments.
- 6) The synchronization was stable for at least three subsequent cycles (1 ATP each) as observed earlier [4]. Possibly 3 subsequent cycles are part of a supercycle of the 3 catalytic centers present in the enzyme.
- 7) Obviously the large subunits (α,β) of the enzyme are rearranged in a cyclic manner during the reaction cycle. According to model calculations (FVM cube models [6]) this structure dynamics is not produced by the gammasubunit rotation observed by fluorescence (the effect of this central mass is much weaker). Probably there is a hirarchy of three movements inside ATPase:

 F_o part-movement \Leftrightarrow gamma rotation \Leftrightarrow F_1 ATPase subunit movement.

8) The unexpectedly short duration of the structure pulses (<400 ms; 3% cycle) produced a problem with the readout blind phases of the CCD-camera. This effect is known as "aliasing" and produces an extra-error. The "aliasing" effect is enhanced by small variations of the start lag time (50-100 ms) during the activation of the enzyme by the substrate concentration jump.

Fig.1: No changes occur in resting enzyme.

yme. Fig.2: Structure dynamics working of ATPase

For the investigation of working proteins we have developped a helium-jet cooled sample environment and a stopped-flow device. With a CCD camera the full flux of ID02 was used. As shown in the LS722b /717 report, the enzymes were >40s stable with radical scavengers. By a substrate concentration jump the reaction cycle of ATP hydrolysis of F1ATPase and ATP-synthase from Micrococcus luteus can be started and synchronized. The structure was shown to change transiently earlier qualitatively at DESY [4]. As shown in Fig.1 (control experiment) and Fig.2 (working F1ATPase) both events necessary for taking a structural film occur also at 1000 fold increased flux at ESRF-ID02 (10^{13} ph/s at 0.2 * 0.8 mm). At ESRF we observed novel structural features of working F1ATPase and ATP-synthase [5]:

- In the control experiment (F1ATPase, no ATP) no changes were observed (no artefact).
- With working enzyme (F1ATPase + CaATP) a series of 3 short expansion pulses occurs. The reaction cycle is terminated by a typical shrink pulse (by this the cycle is easyly located). The shrink pulse was also visible in first experiments with complete ATP-synthase.
- In contrast to [4] the results were obtained with "single shots". The structural changes appear as unexpectedly short pulses (< 400 ms at 13 s cycle time, yielding an aliasing error)
- The time scale varied with the same law as the enzymatics with the temperature ($\pm 20\%$).
- The structure dynamics was visible for at least 3 subsequent reaction cycles, as observed earlier [4] and by enzyme kinetics (1 ATP/molecule, but the enzmye contains 3 cooperatively coupeled enzymatic centers [2]). Thus possibly 3 subsequent "sub-cycles" form a "supercycle" of ATPase.
- The location and more precise estimation of the short time events is important for the interpretation of the results: Modeling (cube method FVM [6]) showed, that the observed structural pulses are not caused by the rotation [1,3] of the central gamma-subunit inside the hollow F1ATPase complex. Obviously the large subunits $3^*(\alpha,\beta)$ are rearranged in a cyclic manner inside the enzyme during the reaction cycle. Probably there is a hirarchy of three movements inside ATPase. In contrast to [1,3] we observed the last sequence part:

F_o part-movement \Leftrightarrow gamma rotation \Leftrightarrow F_1 ATPase subunit movement

- 2. Abrahams, J.P.; Leslie, A.G.W.; Lutter, R.; Walker, J.E. (1994) Nature 370, 621-628 (crystallography)
- 3. Noji, H.; Yasuda, R.; Yoshida, M.; Kinosita, K. (1997) Nature 386, 299-302 (fluorescence study)
- 4. Neidhardt, A., Nawroth, T.; Hütsch, M.; Dose, K. (1991) FEBS Lett. 280, 179-182
- 5. Nawroth, T. (1997) extra-talk at ESRF user meeting and 2 late posters at SR50 conference
- 6. Nawroth, T. (1989) Physica B 156, 493-495 (improved PC-version available for modelling dynamics)

^{1.} Junge, W.; Lill, H.; Engelbrecht, S. (1997) Trends Biol. Sci. 22, 420-423 (state of the art review)